
The 2009 ACM North Western
European Regional Contest

Friedrich-Alexander-University,
Nuremberg, Germany

NWERC Jury

November 8, 2009

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 1 / 16



jury sample solutions

Problem min. LOC max. LOC
An Industrial Spy 24 102
Common Subexpression Elimination 52 133
Divisible Subsequences 14 29
Fractal 36 159
Mountain Road 24 113
Moving to Nuremberg 67 115
Room Assignments 59 110
Settlers of Catan 32 137
Simple Polygon 35 134
Wormholes 56 129∑

399 1161

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 2 / 16



An Industrial Spy

generate all possible numbers

use backtracking or next permutation

test primality by trial division or sieve of
eratosthenes

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 3 / 16



Common Subexpression Elimination

parse expression (recursive descent)

find equal subtrees

comparing whole subtrees (top-down) is too slow

construct shared trees bottom-up

store the first occurrence of a subtree in a table

identified by label and unique numbers of children

comparing trees needs just one table lookup

time O(n · log n) and space O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 4 / 16



Common Subexpression Elimination

parse expression (recursive descent)

find equal subtrees

comparing whole subtrees (top-down) is too slow

construct shared trees bottom-up

store the first occurrence of a subtree in a table

identified by label and unique numbers of children

comparing trees needs just one table lookup

time O(n · log n) and space O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 4 / 16



Common Subexpression Elimination

parse expression (recursive descent)

find equal subtrees

comparing whole subtrees (top-down) is too slow

construct shared trees bottom-up

store the first occurrence of a subtree in a table

identified by label and unique numbers of children

comparing trees needs just one table lookup

time O(n · log n) and space O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 4 / 16



Common Subexpression Elimination

parse expression (recursive descent)

find equal subtrees

comparing whole subtrees (top-down) is too slow

construct shared trees bottom-up

store the first occurrence of a subtree in a table

identified by label and unique numbers of children

comparing trees needs just one table lookup

time O(n · log n) and space O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 4 / 16



Divisible Subsequences

naive O(n2) solution times out

instead, compute partial sums modulo d

if two partial sums have the same remainder, their
difference is divisible by d

for each remainder, save the number of
corresponding partial sums

time O(n + d), space O(d)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 5 / 16



Fractal

Basic idea: iterate over the depth and find out
where you end up.

For each depth, iterate over the line segments until
you pass the fraction f .

Then rotate and scale your basis and proceed with
the next depth.

Note: using complex numbers (e.g. C++’s
complex<double>) is convenient to represent
coordinates for scaling/rotating.

time O(n · d)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 6 / 16



Fractal

Basic idea: iterate over the depth and find out
where you end up.

For each depth, iterate over the line segments until
you pass the fraction f .

Then rotate and scale your basis and proceed with
the next depth.

Note: using complex numbers (e.g. C++’s
complex<double>) is convenient to represent
coordinates for scaling/rotating.

time O(n · d)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 6 / 16



Fractal

Basic idea: iterate over the depth and find out
where you end up.

For each depth, iterate over the line segments until
you pass the fraction f .

Then rotate and scale your basis and proceed with
the next depth.

Note: using complex numbers (e.g. C++’s
complex<double>) is convenient to represent
coordinates for scaling/rotating.

time O(n · d)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 6 / 16



Mountain Road

Sort incoming cars into two lists: left-goers and
right-goers

dynamic programming: find the optimal time when
a left-goers and b right-goers have passed and the
last car was of type A or B

try to send 1, 2, 3, . . . cars at a time

time O(n3), space O(n2)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 7 / 16



Moving to Nuremberg

For each v , want sum of distances D(v) from v to
every other node (weighted by their frequencies)

Easy to compute contribution to D(v) from nodes
in subtree rooted at v

Find formula for remaining part in terms of
D(parent)

Propagate down from the root

greedy optimisation of convex function

time O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 8 / 16



Room assignments

bipartite graph: persons vs rooms

valid room assignment is perfect matching

for each person: connect his two rooms directly

for each connected component of size m, the
number of edges must be ≤ m

each connected component must contain at most
one cycle

one tree component, additional components with
exactly one cycle

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 9 / 16



Room assignments

bipartite graph: persons vs rooms

valid room assignment is perfect matching

for each person: connect his two rooms directly

for each connected component of size m, the
number of edges must be ≤ m

each connected component must contain at most
one cycle

one tree component, additional components with
exactly one cycle

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 9 / 16



Room assignments

bipartite graph: persons vs rooms

valid room assignment is perfect matching

for each person: connect his two rooms directly

for each connected component of size m, the
number of edges must be ≤ m

each connected component must contain at most
one cycle

one tree component, additional components with
exactly one cycle

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 9 / 16



Room assignments

Distinguish 3 cases:
1 one component with more than cycle: impossible
2 only one component: choose the two nodes with highest

rating
3 more components: choose room with highest rating from

tree component
second room either from tree (same rating) or from
cyclic component

time O(n), space O(n)

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 10 / 16



Settlers of Catan

Nothing really clever, just simulate the procedure

time O(n) using precomputation

How to represent a hexagonal lattice?

How to simulate the spiral?

Good exercise for solving ad hoc problems and
finding easy to code representations.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 11 / 16



Settlers of Catan

Nothing really clever, just simulate the procedure

time O(n) using precomputation

How to represent a hexagonal lattice?

How to simulate the spiral?

Good exercise for solving ad hoc problems and
finding easy to code representations.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 11 / 16



Settlers of Catan

Nothing really clever, just simulate the procedure

time O(n) using precomputation

How to represent a hexagonal lattice?

How to simulate the spiral?

Good exercise for solving ad hoc problems and
finding easy to code representations.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 11 / 16



Simple Polygon

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 12 / 16



Simple Polygon

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 13 / 16



Simple Polygon

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 14 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Wormholes

A shortest path problem with negative cycles, but
relaxation along edges until ready takes too long.

Use the Bellman–Ford algorithm to detect a
negative cycle.

Recover a cycle by keeping track of by which edge
each vertex was last updated.

Find the earliest possible time to traverse this cycle
and update vertices.

Repeat until no more cycles are present.

This gives an O
(
n4

)
algorithm.

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 15 / 16



Award Ceremony

NWERC Jury The 2009 ACM North Western European Regional ContestFriedrich-Alexander-University, Nuremberg, GermanyNovember 8, 2009 16 / 16


